Source location and mechanism analysis of an earthquake triggered by the 2016 Kumamoto, southwestern Japan, earthquake

نویسندگان

  • Takeshi Nakamura
  • Shin Aoi
چکیده

The 2016 Kumamoto earthquake (Mw 7.0) occurred in the central part of Kyushu Island, southwestern Japan, on April 16, 2016. The mainshock triggered an event of maximum acceleration 700 gal that caused severe damage to infrastructure and thousands of homes. We investigate the source location of the triggered event, and the timing of large energy release, by employing the back-projection method for strong-motion network data. The optimal location is estimated to be [33.2750°, 131.3575°] (latitude, longitude) at a depth of 5 km, which is 80 km northeast of the epicenter of the mainshock. The timing is 33.5 s after the origin time of the mainshock. We also investigate the source mechanism by reproducing observed displacement waveforms at a near-source station. The waveforms at smallersized events, convolved with the source time function of a pulse width 1 s, are similar to the signature of the observed waveforms of the triggered event. The observations are also reproduced by synthetic waveforms for a normal-fault mechanism and a normal-fault with strike-slip components at the estimated locations. Although our approach does not constrain the strike direction well, our waveform analysis indicates that the triggered earthquake occurred near the station that observed the strong motions, primarily via a normal-fault mechanism or a normal-fault with strike-slip

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation into the remote triggering of the Oita earthquake by the 2016 Mw 7.0 Kumamoto earthquake using full wavefield simulation

High-amplitude seismic waves from the Mw 7.0 Kumamoto earthquake of April 16, 2016, triggered another large earthquake 80 km to the NE roughly 30 s later. The source was located at shallow depths beneath the Yufuin geothermal field, Oita Prefecture, Japan, and the event magnitude was approximately 5.9. To date, this is one of the clearest known examples of a remotely triggered large earthquake....

متن کامل

Remote triggering of seismicity at Japanese volcanoes following the 2016 M7.3 Kumamoto earthquake

The MJMA7.3 Kumamoto earthquake occurred on April 16, 2016, in the western part of Kyushu, at a depth of 12 km, on an active strike-slip fault. Here, we report on a relatively widespread activation of small remote earthquakes, which occurred as far as Hokkaido, detected by analyzing the continuous waveform data recorded at seismic stations all over Japan. Such relatively widespread remote seism...

متن کامل

Geomorphic features of surface ruptures associated with the 2016 Kumamoto earthquake in and around the downtown of Kumamoto City, and implications on triggered slip along active faults

The ~30-km-long surface ruptures associated with the Mw 7.0 (Mj 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped ~100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Auth...

متن کامل

Earthquakes in Oita triggered by the 2016 M7.3 Kumamoto earthquake

During the passage of the seismic waves from the M7.3 Kumamoto, Kyushu, earthquake on April 16, 2016, a M5.7 [semiofficial value estimated by the Japan Meteorological Agency (JMA)] event occurred in the central part of Oita prefecture, approximately 80 km far away from the mainshock. Although there have been a number of reports that M < 5 earthquakes were remotely triggered during the passage o...

متن کامل

Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry

Unmanned aerial systems (UASs) and structure-from-motion multi-view stereo (SfM-MVS) photogrammetry have attracted a tremendous amount of interest for use in the creation of high-definition topographic data for geoscientific studies. By using these techniques, this study examined the topographic characteristics of coseismic landslides triggered by the 2016 Kumamoto earthquake (Mw 7.1) in the Se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016